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Identification with repeated observations

Data on “repeated observations” (panel data, time-series cross section
data, spatially clustered data, etc.) provide opportunities beyond what
you can do with simple cross sections:

I More nuanced estimation of causal effects under randomization
or CIA given observables.

I Growth curves and trajectories.
I Dynamic treatment regimes.
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Dynamic treatment regimes
I Blackwell and Glynn (2013) discuss effects in longitudinal data.

I Treatment sequences:
I Past treatment history, Dit = (Di1, ...,Dit,Dit+1, , ...).
I Future treatment trajectory: Dit,τ(dit) = (Dit+1(dit), ...,Dit+τ(dit))

I “Blip” effects:
I Last period blip:

E D
[
E [Yit(dit−1,1)−Yit(dit−1,0)|Dit−1 = dit−1]

]
.

I First period blip: E [Yit+τ(1,Dit,τ(1))−Yit+τ(0,Dit,τ(0))]
I Blip effects identified under usual assumptions.

I Treatment regime effects:
I Effects of sequences of treatments, d.
I Effects of simplified combinations of treatment sequences (e.g.,

total number of periods under treatment, treatment in last three
periods, etc.)—“marginal structural models.”

I Sequence effects require “sequential ignorability”:
For every sequence dt, covariate history Xit, and period t,
Yit(dt)⊥⊥ Dit|Xit,Dit−1 = dt−1.

I See Blackwell (2012) for more.
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Identification with repeated observations

Data on “repeated observations” (panel data, time-series cross section
data, spatially clustered data, etc.) provide opportunities beyond what
you can do with simple cross sections:

I More nuanced estimation of causal effects under randomization
or CIA given observables.

I Growth curves and trajectories.
I Dynamic treatment regimes.

I Possibility of identifying causal effects when we do not have
randomization or CIA given observables.

I Controlling for unobserved confounders.
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Identification with repeated observations

Techniques we will consider:
I Fixed effects estimation.
I Difference in differences estimation and extensions.
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Motivating Example

If we pool data since 1848 on regime types and leader education, there
is a clear pattern: leaders in democracies have more education. So, can
we conclude that installing democratic institutions causes a country to
select more educated leaders?

I What about global macro-trend of rising education as well as
democracy?

I Could this mean that the relationship is spurious to this temporal
coincidence?
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Motivating Example

So the picture suggests that there is a persistent difference. Is this
enough to conclude that installing democratic institutions causes a
country to select more democratic leaders?
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Fixed Effects

I Fixed effects (FE) methods allow us to use repeated observations
to account for fixed sources of confounding in estimating causal
effects.

I Conventionally, these methods rely on strong functional form
assumptions.

I We can loosen these assumptions somewhat.
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Fixed Effects
The conventional FE setting, adapted for causal inference:

I We have a sample of units indexed by i = 1, ..,N observed over
periods indexed by t = 1, ..,Ti.

I Ti ≥ 2 for all i, and number of units with same t value is at least
2 for all t. This is either panel or time-series cross-section data.

I Dit = 0,1 is treatment assigned to i in period, t.
I Xit is a vector of covariates that vary for i over t.
I We have Y1it and Y0it, period-specific potential outcomes under

treatment or control, respectively.1

I We observe Yit = DitY1it +(1−Dit)Y0it = Y0it +Dit(Y1it−Y0it).
I Ai is vector of “time-invariant” attributes of i.
I St is vector of “time-specific” conditions that apply to all i in

time t.
I Ai and St may be unmeasured (unobserved).

1Definition of these potential outcomes is tricky since they can depend on
treatment histories. Assumptions below sidestep this issue with X specification.
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Fixed Effects
I Assumption 1: Dit is conditionally mean independent in any

given period, with the conditioning set including the covariate as
well as unit- and time-specific effects:

E [Y0it|Ai,St,Xit,Dit] = E [Y0it|Ai,St,Xit]

This satisfied under CIA conditional on Ai and St, which may be
unmeasured, as well as Xit.2

I Assumption 2: Y0it can be characterized via the linear expression,

E [Y0it|Ai,St,Xit] = µ +A′iγ +S′tζ +X′itβ ,

such that A′iγ is fixed over time, S′tζ is fixed over units, and µ is a
global constant.

I Assumption 3: Causal effects are constant and additive over i
and t:

E [Y1it|Ai,St,Xit] = E [Y0it|Ai,St,Xit]+ρ.

Thus ρ defines a constant per-period treatment effect, the target
causal parameter of interest.

2Note that Xit may contain previous treatment assignment histories, lags, etc.
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Fixed Effects

I Define the abbreviated terms αi = A′iγ and λt = S′tζ .

I Define εit = Y0it−E [Y0it|Ai,Xit, t].
I Then, putting it together, observed outcomes are given by,

Yit = µ +αi +λt +ρDit +X′itβ + εit.

This is a model with unit-specific (αi) and time-specific (λt)
“fixed effects.”

I We could estimate this via OLS, using unit-specific and
time-specific dummy variables to estimate αi and λt.

I Note what this implies: we don’t have to measure the
components of Ai and St in order to take advantage of
Assumption 1. We only have to measure whatever Xit are needed
for Assumption 1 to hold.
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Fixed Effects

I This is why FE models are touted as allowing for the
identification of causal effects despite unobserved unit or
period-specific confounding.

I By construction, the FE remove Ai or St from the analysis.
I This is not a problem (contrary to what you might hear):

I This research design presumes that what interests us is ρ .
I If what interests us are effects of variables in Ai or St, then Xit and

Dit are post-treatment!
I Nothing in the above implies that causal effects of Ai or St are

identified anyway.
I To study effects of variables in Ai or St you need another

identification strategy and another research design.
I I will mention these points again later.
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Fixed Effects
I We have expressed the FE model in terms of units over time. A

similar logic applies when we have individuals nested within
groups (e.g., people within states).

I If the groups are indexed by i and individuals by t, then
group-specific one-way FE model is,

Yit = µ +αi +ρDit +X′itβ + εit.

I If individuals are partitioned by strata that cross-cut groups (e.g.,
occupational strata across states), we can write a two-way FE,

Yist = µ +αi +λs +ρDist +X′istβ + εist,

where s indexes the cross-cutting strata.
I Thus, FE models are ways to characterize arbitrary “unmeasured

heterogeneity” across strata.
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Mechanics of FE
I FE via OLS using dummy variables is equivalent to other

procedures that do not require estimating dummy variable
coefficients for each i and t value.

I Consider again our unit- and time-specific FE model:

Yit = µ +αi +λt +ρDit +X′itβ + εit

= µ +
N

∑
j=1

αj1(i = j)+
T

∑
s=1

λs1(t = s)+ρDit +X′itβ + εit

I Let’s look at account just for αi first.
I By FWL, residualizing with respect to 1(i = j) implies

subtracting off mean values for unit j and leaving other units
untouched. Going through all j = 1, ...,N, this yields:

(Yit− Ȳi) = (λt−
1
T
)+ρ(Dit− D̄i)+(Xit− X̄i)

′
β +(εit− ε̄i).
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Mechanics of FE

I We could thus account for αi by demeaning the data directly.
I Let Wi be the matrix containing all of the stacked regressors for

unit i (including the constant and FEs) and let θ be the vector of
all of the coefficients. Then,

Yi = Wiθ + εi.

I We can define an idempotent “sweep” matrix for each unit,

QT := IT − J̄T , where J̄T :=
1
T

ιT ι
′
T

where ιT is a T-vector of ones.
I Pre-multiplication of each unit’s data by QT yields deviations

from unit means, which in turn “sweeps” away the αi’s.
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Mechanics of FE
I We can apply this to the whole dataset at once using,

Q = IN⊗QT = INT − (IN⊗ J̄T) (also idempotent)

I Let Wtv refer to the matrix of regressors excluding the unit FEs
and constant, and define θ tv as the vector of coefficients that
exclude the same (tv = time-varying).

I Then, by the above, we can obtain the same OLS estimates of the
time-dummies, ρ and β using, λ

ρ

β

=
(

Wtv′QWtv
)−1

Wtv′QY. (1)

I This is how panel regression functions like Stata’s areg and
xtreg and R’s plm actually carry out one-way FE.

I Algebraically equivalent to the dummy variable regression.
I Calculate standard errors from (1) in usual way (accounting for

residual clustering if need be–e.g., for serial dependence).
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Mechanics of FE

FE estimation is also called “within” estimation. To see why, consider
again the following algorithm for one-way FE estimator (for just αi):

1. For each of the FE strata (e.g., units), do a stratum-specific
regression and get the stratum-specific coefficients.

2. Compute the weighted averages of each those stratum-specific
coefficients:

I Weights for coefficient βk equals the stratum-specific variances of
the associated residualized regressor, X̃itk.
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Mechanics of FE

I You already know this!

δR =
∑x δXVar [Dit|Xit = x]Pr[Xit = x]

∑x Var [Dit|Xit = x]Pr[Xit = x]

where in this case the x’s refer to the FE strata and Xit is unit i’s
stratum identifier.

I This provides a nice way to visualize FE estimation:
I You do separate regressions in each of the FE strata, and then

taking the weighted average of the results.
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Mechanics of FE

I We can also define a sweep transformation to account for both αi

and λt, although the math is more complicated and so is the
interpretation (Baltagi, 2005, Ec. An. Panel Data, pp. 35-6):

QTW = IN⊗ IT − IN⊗ J̄T − J̄N⊗ IT + J̄N⊗ J̄T ,

where all terms are defined analogously to Q.
I Then each element is of the form,

ỹit = yit− ȳi− ȳt + ȳ

I Here, the “within” interpretation is not so clean.
I Also, with respect to causal effects, there are some complications

(Imai and Kim, 2012)– we will return to this when we discuss
difference-in-differences.
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Sources of Confusion

I Aggregation bias as distinct from confounding bias.
I Regressors that do not vary within strata or units and FE.
I Clustering standard errors by FE strata.
I Lags with FE.
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Aggregation bias as distinct from confounding bias

Motivation for FE:
I Confounding due to correlation between Dit and Ai or between

Dit and St

I Aspects of Ai or St that generate the confounding are
unmeasured.
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Aggregation bias as distinct from confounding bias

The FE estimator computes,

δR =
∑x δXVar [Dit|Xit = x]Pr[Xit = x]

∑x Var [Dit|Xit = x]Pr[Xit = x]

Even though we have accounted for the confounding, this estimator is
still biased (and inconsistent) if what we really want is

ρ = ∑
x

δX Pr[Xit = x].

The nature of this bias is “aggregation bias.”
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Aggregation bias as distinct from confounding bias

To recover ρ , we can either
I Compute stratified estimator directly (sample analogue of ρ),
I Weight the FE regression by 1/Var [Di|Xi = x], or
I Compute the centered-interaction FE model (cf. Imbens &

Wooldridge 2009, p. 28).

See R simulation...
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Regressors that are constant within strata

I If a regressor is constant within an FE stratum, then it is perfectly
collinear with that FE stratum dummy.

I E.g., a time-invariant regressor in the panel/TSCS context.

I When you fit FE, these within-stratum-invariant (or
time-invariant) regressors must be dropped.

I (Recall that with multi-way FE, what matters is whether the
“swept” variables are time-invariant or not.)
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Regressors that are constant within strata

I This has led some to conclude that FE “throws the baby out with
the bath water” (cf. Green et al. vs. Beck & Katz), and that other
approaches (e.g., RE or OLS with adequate controls) are “better.”

I For causal inference on D, we don’t care about the baby:
I The point of the regression is to estimate the effect of Dit.
I If FE addresses confounding due to within-stratum- or

time-invariant Xi without having to estimate a coefficient for Xi,
then that’s great!

I If the treatment of interest does not vary over t, then obviously FE
is irrelevant altogether!

I Such arguments are relevant when we are trying to create a
predictive model that accounts for variation in both
within-stratum- or time-invariant factors and within-stratum- or
time-varying factors.
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Clustering standard errors by FE strata

I Recall that we cluster to account for dependencies in the
treatment.

I If treatments are assigned randomly within FE strata (even if
treatment probabilities/distributions differ from
stratum-to-stratum), no need to cluster by strata.

I If treatment assignment within strata exhibits serial dependence,
or “contagion”-based dependence (whether positive or negative),
then you want to cluster on the stratum indicators.

I Clustering in multiple directions can be handled by multi-way
cluster robust (Cameron et al. 2011); for dyadic data, see
Aronow et al. (2015).

I NB: reghdfe command in Stata uses the correct
degrees-of-freedom adjustment when FE strata and clusters
coincide (see http://scorreia.com/software/reghdfe/). Usual
areg, xtreg, and R commands are overconservative.
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Lag specifications
We may want to account for either (i) effects of Dit into future periods
or (ii) possibility that Dit is endogenous to past Yit or Xit, which also
affect current Yit.

I Consider one-period autoregressive distributed lag (ADL) model:

Yit = µ+αi+λt+πYi,t−1+ρDit+ρ−1Di,t−1+X′itβ +X′i,t−1β−1+εit,

where εit is exogenous to Dit and Di,t−1 conditional on the other
regressors. (Deeper lags are conceivable of course.)

I With small T , FE methods above result in biased π̂ , which can
propagate to other estimates. This “Nickell bias” arises because
εit− ε̄i contains εi,t−1, which is part of Yi,t−1. Disappears as T
gets large. cf. MHE for strategies when T is small.

I If εit contains serial correlation despite the inclusion of Yi,t−1,
then we again have bias on π , and there’s basically nothing that
you can do about it.
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Lag specifications

I In these sims, both unit FEs and Yi,t−1 needed for identification.
I Shows decay in Nickell bias and irremovable bias due to LDV

and serial correlation.
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Lag specifications

I Assuming the model is correct and identified, ADL lends itself
to dynamic interpretations (cf. DeBoef & Keele, 2008).

Yit = µ+αi+λt+πYi,t−1+ρDit+ρ−1Di,t−1+X′itβ +X′i,t−1β−1+εit

I ρ represents the immediate effect of Dit on Yit.
I Effect of change in Dit after one period is,

∂Yi,t+1

∂Dit
= π

∂Yi,t

∂Dit
+ρ−1 = πρ +ρ−1

I After two periods, ∂Yi,t+2
∂Dit

= π2ρ +πρ−1.
I Assuming |π|< 1, after ≈infinite periods, the long-run effect of

a treatment change in period t on future outcomes is ρ+ρ−1
1−π

.
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Remarks

I Huge literature on panel, TSCS, and other FE models.
I A lot more than one could do using unit-specific time trends, first

differences, forward deviations, error correction specifications,
dynamic panel models and panel instruments, and so on (cf.
MHE for some nice applied examples).

I Full gamut of time series techniques could also be brought to
bear here.

I Efficiency gains are possible by using multilevel models or other
types models that “borrow strength” across strata (covered in
Quant III).
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Remarks

I That being said, unleashing a larger arsenal does not necessarily
result in more credible, much less interpretable, estimates.

I The models here sometimes obscure issues such as
post-treatment biases and effect heterogeneity that may lead to
misguided inference.

I Beware of “mechanical identification”...
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